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Abstract. Safe operation of complex structures and machines cannot be achieved by visual inspections alone. 

Thus, simple, efficient and cost-effective inspection methods are of paramount importance. This review article is 

aimed at providing an insight into approaches of health monitoring and condition monitoring of structures and 

machines based on machine learning. Machine learning is an approach of using data to construct predictive 

models giving predictions of existing and future trends. In the case of structural health monitoring and condition 

monitoring of machinery, it is able to detect damage and distinguish between different damage types and 

severities, thus being able to provide early warnings of failure of structural and machinery components. In this 

review paper, the focus is on information obtained from time-frequency features, which provides an advantage 

with respect to features in time domain and frequency domain of tracking changes of structural integrity in time, 

which is especially useful in dealing with non-stationary signals. Details of damage-sensitive feature extraction, 

data analysis and decision making are provided. 
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Introduction 

The ever increasing needs for safe and reliable infrastructure, transportation and machinery have 

facilitated a rapid development of structural health monitoring (SHM) and condition monitoring (CM) 

domains. The interrogation of integrity of structures and machines is a multidisciplinary field spanning 

such branches of engineering as civil, mechanical and aeronautical engineering. The advancement of 

these techniques offers a tremendous asset to maintaining and preserving the city infrastructure, 

various machinery as well as engineering communication networks, which is crucial for units 

operating in harsh environmental conditions. Moreover, these methods help in reducing structural and 

machinery inspection costs and unwanted operational downtime with an added reliability. For 

example, in the case of wind turbine generators, about 25 % to 30 % of the overall wind power 

generation costs account for operation and maintenance, while wind turbine blade failure results in 

more than 7 days of downtime [1]. The approach of SHM and CM exploits collection and analysis of 

signals continuously measured with mounted sensors or visual images captured with aerial vehicles [1] 

or laser scanners [2].  

The most popular branch of methods for structural and machinery diagnostics is based on 

vibration monitoring, because vibration signals can be measured with relative ease and they correlate 

well with the working conditions of rotating machinery [3]. By extracting relative damage-sensitive 

features from the measured vibration signals (either displacement, velocity or acceleration) in time 

domain of frequency domain and applying pattern recognition methods like supervised or 

unsupervised learning schemes, the developed algorithms are capable of detecting and possibly 

localizing the damage. In some cases, estimation of damage severity is also possible.  

The advantage of machine learning in CM of rotating machinery with respect to the traditional 

CM approach is that traditional approaches are not suitable in case of non-stationary signals, when 

frequency components change over time due to wear and tear of rotating components [4]. Machine 

learning provides means to build damage monitoring algorithms that learn from the data and adapt to 

the current situation [4]. 

The effectiveness of the steps mentioned above is enhanced by considering a time-frequency 

domain, because many real processes are not infinitely periodic (which is the case with the Fourier 

Transform), but rather contain some transient components. Hence, these components are localized in 

time and cannot be grasped by traditional spectral analysis. The most popular technique for time-

frequency analysis is wavelet transform, which can be used for both stationary and non-stationary 

signals [3]. This method can also be effectively applied to structural damage interrogation composite 

structures to track delamination damage [5;6] and concrete structures to monitor crack propagation [2] 

among other cases. 
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Time-frequency transform 

The most popular time-frequency transform techniques are wavelet transform and the Hilbert-

Huang transform. This paper will focus on the wavelet transform. Wavelets ψ(t) are special functions 

with small oscillations and zero mean. Mother wavelet functions can be translated (parameter a) and 

dilated (scale parameter s) over the axis to obtain daughter wavelet functions ψa,s(t). Continuous 

wavelet transform (CWT) is a convolution of daughter wavelet with a signal x(t) and essentially 

measures a correlation between the two giving rise to the wavelet transform coefficients Wx(a,s):  
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The coefficients of CWT can be viewedas a 3-D plot in the time-frequency domain, where the 

amplitude of the wavelet transform coefficients is perpendicular to the plane of time-frequency 

(wavelet scale). A discrete version of wavelet transform, called discrete wavelet transform (DWT) is 

also used. It is particularly useful to avoid the redundancy of CWT where transform coefficients are 

computed at every scale. The most important strength of wavelet transform in fault detection is the 

adaptability of time-frequency resolution – high time resolution, but low frequency resolution is 

attained at high frequencies and vice versa is true at low frequencies [3]. 

Damage-sensitive features 

Statistical features of the wavelet coefficient plot obtained from CWTcan be extracted and used as 

an input for a pattern recognition scheme. The commonly used statistical features (sequentially 

expressed with W1:WK, where K stands for the number of features) among others are [4;7]: mean value, 

standard deviation, variance, RMS (root-mean-square), absolute maximum, kewness, kurtosis, crest 

factor, total energy of the signal. 

Fault discrimination strategy 

A typical experimental setup for structural damage detection or condition monitoring using 

machine learning is shown in Fig.1 (a). Usually, piezoelectric accelerometer sensors are used to 

measure vibrations in form of acceleration in the case of rotating machines (gearbox) as 

accelerometers are easy to mount, they have low noise output, they have a wide frequency range and 

dynamic range and do not have any moving parts meaning the measurements are reliable [8]. 

Nowadays, modern wireless microelectromechanical (MEMS) accelerometers provide additional 

advantages of small size and mass with no extensive electrical cabling, which is perfectly suited for 

fault monitoring of light and sensitive machines and structures [9]. Tachometer is used to measure the 

rotation speed of a shaft. Delamination interrogation in wind turbine blades is shown in Fig.1 (b). 

Transmitter and receiver transducers are required. The force wave emitted by the transmitter is 

propagating through the structure and this signal is sensed by the receiver. The contents of the 

received signal (amplitude, frequency) are modified due to damage. 

Machine learning is a valuable tool in retrieving valuable information from the data. In order for 

the machine learning approach to be effective in damage detection and monitoring, a reference set of 

values (signal features from healthy structure/machine) have to be collected so that they are compared 

to the corresponding feature sets of the damaged component. 

Features of signals from healthy and damaged components can be either effectively grouped 

together in clusters, when no information is available on the nature of these signals (unsupervised 

learning), or they can be classified into several categories based on class labels. For example, 

“healthy”, “light damage”, “severe damage” or “damage type 1”, “damage type 2”, etc. This later 

mode of grouping is called supervised learning. A common type of supervised machine learning is a 

classification where features are assigned a class. Various classification algorithms exist, among which 

the most popular are decision trees, discriminant analysis, k-nearest neighbours, naïve Bayes, support 

vector machines and artificial neural networks among others [11]. Artificial neural networks (ANN) 

are widely used in machinery fault diagnosis. The two most common variations of ANN are radial 

basis functions (RBF) and multi-layer perceptrons [10]. One of the most frequently used unsupervised 

schemes is k-means clustering, where data are grouped into clusters according to similarity (distance 
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between data points) [12]. Smaller distance implies larger similarity between two data points and thus 

they belong to the same cluster. The dimensionality of data can be reduced and separability of clusters 

or classes can be explored using the principal component analysis (PCA).  

    

Fig. 1.Test setup for damage detection: a – gearbox condition monitoring using accelerometer as a 

sensor [10]; b – delamination detection in wind turbine blades using concept of guided waves [5] 

The strategy of fault discrimination using machine learning with time-frequency features is 

depicted in Fig.2 and can be summarized into the following steps: 

1. Measurement of vibration signal or some other representative signal, for example, strain [12] in 

time domain (Fig.2 (a) and (b)). These measurements have to be performed for the reference 

object at healthy state and damaged state with, possibly, several damage scenarios (different 

damage types or severities). 

2. Wavelet transform (either discrete or continuous) of the acquired time domain signals is computed 

(Fig.2 (c) and (d)). One of the issue here is to select the appropriate wavelet function. In the case 

for rotating machinery, many researchers have used the Daubechies wavelets db2, db4, db5, db10 

and db40 as a mother wavelet function and 3, 4, 8 and 10 level of decomposition of vibration 

signal for identification of fault in gear and bearing [7]. On the other hand, the Morlet wavelet is 

also used due to the fact that its shape resembles an impulse signal produced by many mechanical 

and dynamic systems [10]. Mexican Hat wavelet is also seldom used [2]. 

3. Wavelet transform coefficients are examined at different wavelet scales. Selection of scale values 

for damage-sensitive feature extraction depends on the problem at hand. In [7] the authors 

extracted the wavelet transform coefficients at scales corresponding to gear mesh frequency to 

detect compound faults in gears and bearings. The issue of selection of optimal scale parameters 

for the wavelet functions is described in [10], where wavelet entropy and energy are used to select 

the optimal scales of the wavelet function. The proper scales are chosen, when the Shannon 

entropy of the corresponding wavelet coefficients is minimum and the energy is maximum.  

Wavelet Shannon entropy that measures uncertainty of wavelet coefficients is defined as  
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The ratio of the wavelet transform coefficient energy to the Shannon entropy is defined as 
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The rationale behind this idea is that the Shannon entropy measures similarity between energy 

probability distributions of wavelet transform coefficients. Hence, energy probability distributions of 

wavelet transform coefficients of a signal from healthy element and faulty element would be different 

and these changes could be tracked.  

a) b) 
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1. Time-frequency features are extracted at these chosen wavelet scales and are then used to build a 

classifier. Examples of decision trees and ANN classifiers are shown in Fig.2(f) and (g), 

respectively. These classifiers, in essence, categorize or separate the input data into several 

categories based on the values of the input features. Hence, different types of damage can be 

distinguished. 

2. In order to optimize the classifier, the various hyper-parameters of classifiers have to be fine-

tuned and the classification model has to be cross-validated to avoid overfitting [13]. 

Classification performance is assessed through metrics, such as classification accuracy which 

shows a fraction of correct classifications. 

 

Classes: healthy, damage type 1, damage type 2, …, damage type n. 

1. Raw signal 

 
 

 2. Wavelet scalogram 

 

  

3. Optimum selection of wavelet scales (levels for DWT) 

4. Extract damage-sensitive features W 1
:W

K in time-frequency domain 

5. Build a classifier 

 

6. Assess the condition of the structural part 

Fig. 2. Steps of fault discrimination: 1 – vibration signals of healthy and damaged elements [10];  

2 – CWT coefficient plots for healthy and faulty elements [7]; 3 – optimum selection of wavelet 

scales; 4 – extracted features in time-frequency domain; 5 – actual classification of faults with some 

machine learning model, for example, decision trees [4]; 6 – decision on structural safety based on the 

machine learning model 
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Advantage of time-frequency domain 

The authors in [7] compared the fault diagnostic potential of extracted damage-sensitive features 

from the time, frequency and time-frequency domains in order to detect a compound gear and bearing 

fault. They applied neural network classification algorithm and concluded that standard deviation, 

variance and absolute maximum values extracted from the wavelet transform coefficient plot at scale 

parameter values equal to the gear mesh frequency and its harmonics showed superior diagnostics 

potential as displayed in Fig. 3. 

 

Fig. 3. Classification accuracy of neural network classifier using damage-sensitive features from 

time, frequency and time-frequency domains [7] 

The results of PCA for distinguishing different types of damage (holes) are shown in Fig.4. As it 

can be seen, signal treatment with wavelet transform and relevant feature extraction (energy 

distribution of wavelet coefficients) improves the feature discrimination results (separability of 

classes) of the case when time domain features are used. 

  

Fig. 4. Cluster separability using first two principal components distinguishing between different 

types of holes [12]: a – original time signal is used; b – wavelet transform coefficient energy 

distributions are used as a feature  

Machine learning approach with extraction of relevant damage-sensitive features allows an 

effective prediction of structural damage – be it in the form of binary classification in a sense of 

distinguishing between healthy and damaged structure (damage detection) or a multiclass problem 

with either localizing defect in a pre-defined zones of the structure or discerning between different 

types or severities of damage. 

Conclusions 

The practical challenges associated with this concept are in a fact that usually massive amounts of 

data are needed for successful damage interrogation. Moreover, appropriate machine learning 

algorithms have to be selected and hyperparameters fine-tuned in order to mitigate the harmful effects 

of noise and outliers. Sophisticated internal regularization mechanisms are applied for the algorithms 

to aid on this matter. Also data pre-processing, such as feature transformations and normalization, 

have to be carried out for the classifier performance improvements. PCA approach enables to reduce 

the number of features by keeping only the principal components with the largest explained variance. 

However, this does not ensure the optimum separation of class boundaries. Effective ways to enhance 

a) b) 
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the separability of classes (for example, types of holes in Fig. 4), usually must be found. Thus, care 

must be taken when selecting the signal features that are the most representative for every damage 

scenario. By combining signal information in time and frequency domains or finding other more 

important features, one can increase the distance between clusters of classes, improving separability. 
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